Аннотация к рабочей программе дисциплины «Генетика опухолей»

основной профессиональной образовательной программы подготовки кадров высшей квалификации в магистратуре по направлению подготовки 06.04.01

Экспериментальная медицина форма обучения: очно-заочная

1. Целью освоения дисциплины является изучение общих представлений о значении наследственных факторов в возникновении злокачественных новообразований, формирование у студентов системных знаний о вирусных и клеточных онкогенах, механизмах превращения протоонкогенов в онкогены, а также роль генов-супрессоров в онкогенезе. Знание основных закономерностей изменения генетического контроля над процессами клеточной дифференцировки может найти практическое применение в биомедицинских приложениях, связанных с разработкой генетического редактирования генома.

Задачи дисциплины:

- 1. формирование системы, профессиональных компетенций, необходимых для успешного решения фундаментальных задач в области генетики злокачественных новообразований;
- 2. формирование качеств генетика-исследователя, способного реализовывать прикладные научные исследования и создавать новые биомедицинские технологии изучения генетических механизмов развития, прогрессирования и наследования злокачественных новообразований.

2. Место дисциплины в структуре образовательной программы.

Дисциплина «Генетика опухолей» относится к вариативной части ООП, включена в часть дисциплины по выбору Б1.В.ДВ.02.01 по направлению подготовки 06.04.01 Биология. Дисциплина предназначена для освоения студентами очно-заочной формы обучения, преподается на первом курсе, во втором семестре.

3. Требования к результатам освоения дисциплины и индикаторы достижения компетенций.

Изучение дисциплины направлено на формирование у обучающихся следующих профессиональных (ПК) компетенций:

№	Код	Содержани е	Код и наименовани	В результате изучения дисциплины обучающиеся должны:		
п/ п	компетен ции	компетенци и (или ее части)	е индикатора достижения компетенции	Знать Уметь		Владеть
1	ПК-2	Способност ь проводить биомедицин ские исследовани я с использован ием живых организмов и	ПК-2.1 Проводит научно- исследователь скую работу на биологически х объектах для решения задач экспериментал	Особеннос ти организаци и биологиче ских объектов	Подбирать адекватную биологическу ю модель для научно-исследователь ской работы	Методикам и работы с биологическ ими объектами разного уровня организации : от клеточного

биологич	еск ьной		до	целого
их сис	тем медицины		орган	изма
различны	X			
уровней				
организа	ции			
, в том чи	ісле			
в сф	pepe			
разработі	ки			
и контр	п п п п п п п п п п п п п п п п п п п			
биобезоп	асн			
ости но	вых			
лекарство	енн			
ых средст	ГВ			

4. Перечень компетенций и результатов обучения в процессе освоения дисциплины

Компе- тенция (код)	Индикаторы достижения компетенций	Виды занятий	Оценочные средства
ПК-2	ПК-2.1 Проводит научно-исследовательскую работу на биологических объектах для решения задач экспериментальной медицины	1	Устно- письменный опрос; экзамен

5. Объем учебной дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 3 зачетные единицы (108 акад.часов)

Вид учебной работы	Объем в акад.часах
лекции	22
семинары/ практические занятия	11
самостоятельная работа обучающегося	39
экзамен	36

6. Краткое содержание

Молекулярно-генетические механизмы устойчивости к апоптозу, неограниченного потенциала репликации, поддержания ангиогенеза, инвазии в ткани и метастазирование.

Перепрограммирование метаболизма в опухолевой клетке. Каскадная сигнальная трансдукция.

Семейство генов ras: функции кодируемых ими белков и изменения генов, ведущие к онкогенезу. Цитогенетические изменения в опухолевых клетках.

Хромосомные транслокации при отдельных злокачественных новообразованиях. Теломеры и теломераза в трансформированных клетках.

Проонкогены. Онкогены. Гены- супрессоры. Международный проект «Онкогеном человека».

Эпигенетическая нестабильность при онкогенезе. Интерферирующая микроРНК (oncomirs) в онкогенном эффекте. События эпигенетического сайленсинга генов и опухолеобразование. Гипо и гиперметилирование ДНК при некоторых формах опухолей. Факторы внешней среды, инициирующие эпигенетические изменения при онкогенезе. Признаки наследственных онкологических заболеваний. Двухвазная гипотеза Кнудсона и Стронга. Многоударная гипотеза. Рецессивные и доминантные нарушения репарации

ДНК. Семейная ретинобластома. Синдром Ли- Фраумени. Семейный аденоматозный полипоз. Синдром Луи- Бар. Анемия Фанкони. Синдром Блюма. Синдром базально-клеточного невуса.

Наследственный неполипозный рак ободочной кишки. Семейный рак молочной железы. Рак предстательной железы. Множественная эндокринная неоплазия 2 типа. Хронический миелоидный лейкоз. Нейрофиброматоз 1 типа (болезнь Реклингхаузена). Нейрофиброматоз 1 типа. Лимфома Беркита. Синдром Гиппеля- Линдау. Опухоль Вильмса.

Анализ экспрессии опухолевых генов.

Использование «сравнительной/конкурирующей гибридизации на микрочипе» для классификации опухолей в зависимости от экспрессии гена и возможного ответа на лечение.

Анализ геномов злокачественных опухолей. Генетическое тестирование в диагностике и лечении ЗНО.